Megger.

MAGNUS Step-up transformer

- Quick and easy preparation of excitation curves for instrument transformers
- Demagnetize current transformer cores
- Conduct turn-ratio tests on voltage transformers
- Two-hand control enhances personal safety

Description

When power systems are put into operation or when faults occur, it becomes necessary to check the instrument transformers to make sure that they are providing test instruments and protective relay equipment with the correct outputs.

MAGNUS[™] permits you to prepare excitation curves for instrument transformers quickly and easily.

MAGNUS is also used to demagnetize current transformer cores and to conduct turn-ratio tests on voltage transformers. Even though it weighs only 16 kg (35 lbs), it provides 1 A at 2.2 kV. Two-hand control enhances personal safety.

As standard, MAGNUS is delivered with a special high-voltage cable and a robust transport case.

Application example

IMPORTANT Read the User's manual before using the instrument.

Prepare an excitation curve

- 1. Connect MAGNUS to the secondary side of the current transformer being tested and also to an ammeter and voltmeter.
- 2. Increase the voltage with the dial.
- 3. Jot down the values of U (voltage) and I (current).
- 4. Repeat steps 2 and 3 until the current (I) rises sharply without any significant rise in voltage (U).
- 5. Conclude the test by reducing U (voltage) slowly to zero, thereby providing demagnetization.

Megger.

MAGNUS Step-up transformer

Specifications

Specifications are valid at nominal input voltage and an ambient temperature of +25°C, (77°F). Specifications are subject to change without notice.

Environment

Application field

Temperature Operating

Storage & transport Humidity

CE-marking EMC

LVD

General

Mains voltage Power consumption Protection Dimensions Instrument

Transport case

Weight

High voltage cables

The instrument is intended for use in high-voltage substations and industrial environments.

0°C to +50°C (32°F to +122°F) -40°C to +70°C (-40°F to +158°F) 5% – 95% RH, non-condensing

2004/108/EC 2006/95/EC

115/230 V AC, 50/60 Hz 2300 VA (max) Thermal cut-outs

356 x 203 x 241 mm (14" x 8" x 9.5") 610 x 290 x 360 mm (24" x 11,4" x 14,2") 16.3 kg (35,9 lbs) 26.7 kg (58.9 lbs) with accessories and transport case 2 x 5 m (16.4 ft) / 1,5 mm², 15 kV

Measuring outputs

Voltage	100/1, (max load of 1 M Ω)
Inaccuracy	±1,5%
Current	10/1
Inaccuracy	±1,5% at 2 A output current ±3% at 0,5 A output current
Outputs	

Outputs

110 V AC

Voltage outputs, AC 230 V mains voltage

(I) High voltage output 1) (II) Variable transformer, not 0 – 250 V AC isolated from mains 1)

10 A

Voltage	Current	Max. load time	Rest time
2200 V AC	1 A	30 s ²⁾	10 minutes ²⁾
250 V AC	6 A	Continuous	-
115 V mains	voltage		
(I) High voltag	ge output 1)	0 – 2000 V AC	
(II) Variable tr isolated from	ansformer, not mains ¹⁾	0 – 110 V AC	
Voltage	Current	Max. load time	Rest time
2000 V AC	1 A	30 s ²⁾	10 minutes ²⁾

0-2200 V AC

1) The outputs I and II must not be loaded at the same time. 2) The load time and rest time for the high voltage output is calculated at the maximum output voltage and current. During an excitation test the voltage and current is only at their maximum level at the end of the test.

Continuous

Cable set GA-00090

Pc	ostal address	Visiting address	
Megger Sweden AB		Megger Sweden AB	
Вс	ox 724	Rinkebyvägen 19	
SE	-182 17 DANDERYD	SE-182 36 DANDERYD	
S١	NEDEN	SWEDEN	
т	+46 8 510 195 00	seinfo@megger.com	
F	+46 8 510 195 95	www.megger.com	

Ordering information	
Item	Art. No.
MAGNUS Complete with: Cable set GA-00090 Transport case GD-00182	
115 V mains voltage	BT-11190
230 V mains voltage	BT-12390

Registered to ISO 9001 and 14001 Megger is a registered trademark

Printed matter: Art.No. ZI-BT01E • Doc. BT0074DE • 2014 MAGNUS_DS_en_V03 Subject to change without notice.